# Non Culprit Artery PCI: Indications and Timing

Jacqueline Tamis-Holland, MD, FACC
Associate Director, Cardiac Catheterization Laboratory,
Mount Sinai Saint Luke's Hospital, New York, NY



#### Disclosure

I, Jacqueline Tamis Holland, Have nothing to disclose



### Case Example





## What is the next most appropriate step for this patient?

- Multi-vessel PCI at the Time of the Index Procedure (MV PCI)
- Staged Multi-vessel PCI (Staged MV PCI)
- Culprit Only PCI and Ischemia Guided Approach to the noninfarct arteries (COR)

## ACC/AHA/SCAI Focused Update on Percutaneo Intervention

2013 Recommendat

Class III: Harr

PCI should not performed in a noninfarct arte the time of prir PCI in patients STEMI who are hemodynamica stable. 11-13 (*Le Evidence: B*)

PCI indicates | myocardial infarc 2015 Focused Update Recommendation

Class IIb

PCI of a noninfarct artery may be considered in selected patients with STEMI and multivessel disease who are hemodynamically stable,

either at the time of primary PCI or as a planned staged procedure. 11-24 (Level of

Evidence: B-R)

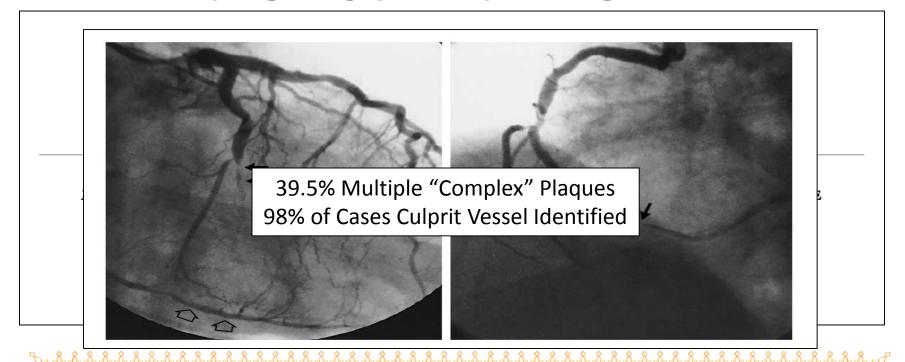
Comment

iffied
mmendation
nged class
i "Ill: Harm" to
and expanded
frame in which
tivessel PCI could
erformed).

EMI, ST-elevation



- Multiple rupture plaques seen in setting of acute infarction
- Slower than normal flow in non-infarct vessel
- Enhancement of regional wall motion of non-infarcted zone Shorter Length of Stay
- Convenient "one time only" procedure
- Complete revascularization improves outcome

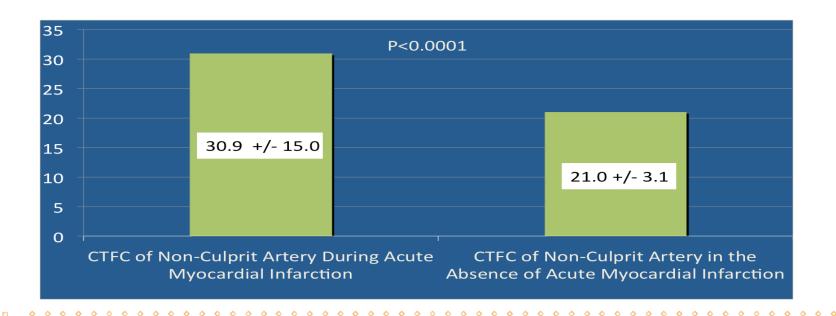



- Multiple rupture plaques seen in setting of acute infarction
- Slower than normal flow in non-infarct vessel
- Enhancement of regional wall motion of non-infarcted zone Shorter Length of Stay
- Convenient "one time only" procedure
- Complete revascularization improves outcome





## Multiple Complex Plaques are Not Un-Common in STEMI




- Multiple rupture plaques seen in setting of acute infarction
- Slower than normal flow in non-infarct vessel
- Enhancement of regional wall motion of non-infarcted zone Shorter Length of Stay
- Convenient "one time only" procedure
- Complete revascularization improves outcome





# Corrected TIMI Frame Count of Non-Culprit Artery During Acute Infarction





- Multiple rupture plaques seen in setting of acute infarction
- Slower than normal flow in non-infarct vessel
- Enhancement of regional wall motion of non-infarcted zone Shorter Length of Stay
- Convenient "one time only" procedure
- Complete revascularization improves outcome





# Relationship Between Acute Angiographic Variables and In-hospital Mortality

| Relationship Between Acute Angiographic Variables and In-Hospital Mortality |                                                                                        |                                                                                                                                   |                                                                                                                                                                     |  |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                             |                                                                                        |                                                                                                                                   |                                                                                                                                                                     |  |  |  |
| Non Survivors<br>(25%, 50%, 75%)                                            | Survivors<br>(25%, 50%, 75%)                                                           | X2                                                                                                                                | P-value                                                                                                                                                             |  |  |  |
| -2.3, -1.3,+ 0.3                                                            | -0.8, +0.4, +1.4                                                                       | 7.6                                                                                                                               | 0.006                                                                                                                                                               |  |  |  |
| -3.4, -3.1, -2.1                                                            | -3.3, -2.8, -1.9                                                                       | 2.3                                                                                                                               | 0.128                                                                                                                                                               |  |  |  |
| 32, 50, 54                                                                  | 45, 53, 61                                                                             | 5.1                                                                                                                               | 0.025                                                                                                                                                               |  |  |  |
|                                                                             | Non Survivors<br>(25%, 50%, 75%)<br>-2.3, -1.3,+ 0.3<br>-3.4, -3.1, -2.1<br>32, 50, 54 | Non Survivors (25%, 50%, 75%) (25%, 50%, 75%) (25%, 50%, 75%) -2.3, -1.3,+ 0.3 -0.8, +0.4, +1.4 -3.4, -3.1, -2.1 -3.3, -2.8, -1.9 | Non Survivors (25%, 50%, 75%) (25%, 50%, 75%) (25%, 50%, 75%) -2.3, -1.3,+ 0.3 -0.8, +0.4, +1.4 7.6 -3.4, -3.1, -2.1 -3.3, -2.8, -1.9 2.3 32, 50, 54 45, 53, 61 5.1 |  |  |  |



Infarct Zone

Non-infarct Zone

- Multiple rupture plaques seen in setting of acute infarction
- Slower than normal flow in non-infarct vessel
- Enhancement of regional wall motion of non-infarcted zone is influenced by the presence of multi-vessel disease
- Shorter Length of Stay
- Convenient "one time only" procedure
- Complete revascularization improves outcome



- Multiple rupture plaques seen in setting of acute infarction
- Slower than normal flow in non-infarct vessel
- Enhancement of regional wall motion of non-infarcted zone is influenced by the presence of multi-vessel disease
- Shorter Length of Stay
- Convenient "one time only" procedure
- Complete revascularization improves outcome



- Multiple rupture plaques seen in setting of acute infarction
- Slower than normal flow in farct vessel
- Enhancement of regional wall motion of non-infarcted zone is influenced by the presence of multi-vessel disease
- Shorter Length of Stay
- Convenient "one time only" procedure
- Complete revascularization improves outcome



- Exaggerated severity of non culprit stenosis
- Potential for severe hemodynamic impairment
- Heightened inflammatory and pro-thrombotic state in STEMI
- Increased dye load
- Increased procedure time/Fluoroscopy
- Uncertain Clinical significance of lesion



- Exaggerated severity of non culprit stenosis
- Potential for severe hemodynamic impairment
- Heightened inflammatory and pro-thrombotic state in STEMI
- Increased dye load
- Increased procedure time/Fluoroscopy
- Uncertain Clinical significance of lesion



# Exaggeration of Non Culprit Artery Stenosis During Acute Infarction

|                                | Infarct<br>Angiogram | Non-Infarct Angiogram | P-value |
|--------------------------------|----------------------|-----------------------|---------|
| Minimal Lumen Diameter (mm)    | 1.53 (.0.51)         | 1.78 (0.65)           | <0.001  |
| Stenosis Non-Culprit (%)       | 49.3 (14.5)          | 40.4 (16.6)           | <0.0001 |
| Reference Vessel Diameter (mm) | 3.1 (0.8)            | 3.0 (0.8)             | 0.3     |



- Exaggerated severity of non culprit stenosis
- Potential for severe hemodynamic impairment
- Heightened inflammatory and pro-thrombotic state in STEMI
- Increased dye load
- Increased procedure time/Fluoroscopy
- Uncertain Clinical significance of lesion



- Exaggerated severity of non culprit stenosis
- Potential for severe hemodynamic impairment
- Heightened inflammatory and pro-thrombotic state in STEMI
- Increased dye load
- Increased procedure time/Fluoroscopy
- Uncertain Clinical significance of lesion



- Exaggerated severity of non culprit stenosis
- Potential for severe hemodynamic impairment
- Heightened inflammatory and pro-thrombotic state in STEMI
- Increased dye load
- Increased procedure time/Fluoroscopy
- Uncertain Clinical significance of lesion



- Exaggerated severity of non culprit stenosis
- Potential for severe hemodynamic impairment
- Heightened inflammatory and pro-thrombotic state in STEMI
- Increased dye load
- Increased procedure time/Fluoroscopy
- Uncertain Clinical significance of lesion



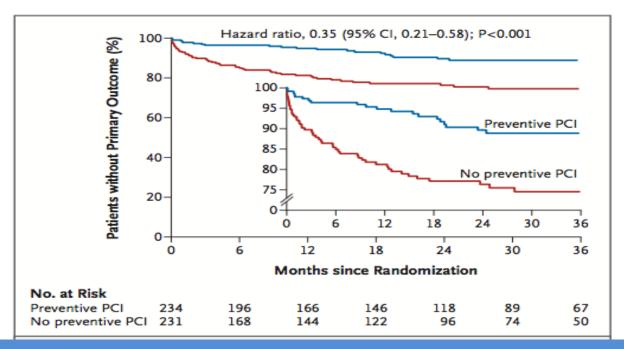
- Exaggerated severity of non culprit stenosis
- Potential for severe hemodynamic impairment
- Heightened inflammatory and prethrombotic state in STEMI
- Increased dye load
- Increased procedure time/Fluoroscopy
- Uncertain Clinical significance of lesion



# Multi-vessel PCI During Index Procedure What is the Evidence?






#### Forest Plots of Observational Studies

Odds Ratio for Long Term Mortality: Culprit Vessel Only vs Multi-vessel PCI at Index PCI

|                              | CUI         | PRIT     | MULTIV     | ESSEL   | Odds Ratio (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |               |
|------------------------------|-------------|----------|------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|
| Study                        | Events      | Total    | Events     | Total   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OR     | 95%-CI        |
|                              |             |          |            |         | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |               |
| Roe (2001)                   | 13          | 79       | 19         | 79      | • 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.62   | [0.28; 1.37]  |
| Corpus (2004)                | 42          | 354      | 5          | 26      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.57   | [0.20; 1.58]  |
| Qarawani (2008)              | 2           | 25       | 9          | 95      | - 1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0.83 | [0.17; 4.11]  |
| Khattab (2008)               | 3           | 45       | 2          | 28      | - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93   | [0.15; 5.93]  |
| Varani (2008)                | 8           | 156      | 12         | 147     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.61   | [0.24; 1.53]  |
| Cavender (2009)              | 1321        | 25802    | 246        | 3134    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.63   | [0.55; 0.73]  |
| Hannan (2010)                | 54          | 503      | 59         | 503     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.91   | [0.61; 1.34]  |
| Toma (2010)                  | 111         | 1984     | 27         | 217     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.42   | [0.27; 0.65]  |
| Dziewierz (2010)             | 57          | 707      | 11         | 70      | - 11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.47   | [0.23; 0.95]  |
| Mohamad (2011)               | 3           | 30       | 2          | 7 🕶     | • !!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.28   | [0.04; 2.11]  |
| Bauer (2013)                 | 72          | 2118     | 6          | 419     | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.42   | [1.05; 5.61]  |
| Jaguszewski (2013)           | 168         | 3833     | 81         | 1108    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.58   | [0.44; 0.76]  |
| Santos (2014)                | 14          | 180      | 2          | 77      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | → 3.16 | [0.70; 14.27] |
| Jeger (2014)                 | 40          | 1467     | 12         | 442     | <del>-       -     -     -     -     -     -     -     -     -       -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -</del> | 1.00   | [0.52; 1.93]  |
| Kim (2014)                   | 15          | 155      | 5          | 67      | - 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.33   | [0.46; 3.82]  |
| Manari (2014)                | 127         | 706      | 26         | 367     | ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 2.88 | [1.85; 4.48]  |
| Iqbal (2014)                 | 164         | 2418     | 41         | 403     | - m 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.64   | [0.45; 0.92]  |
| Bayesian hierarchical meta-a | ınalysis    |          |            |         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.83   | [0.59; 1.15]  |
| Fixed effect model           | 2214        | 40562    | 565        | 7189    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.75   | [0.67; 0.82]  |
| Random effects model         |             |          |            |         | <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.83   | [0.62; 1.09]  |
| Heterogeneity: I-squared=7   | 5.6%, tau-s | quared=0 | ).1929, p< | <0.0001 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |               |
|                              |             |          |            |         | 02 05 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |               |
|                              |             |          |            | 0.1     | 0.2 0.5 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 10   |               |
|                              |             |          |            |         | CVO Better MV Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tter   |               |

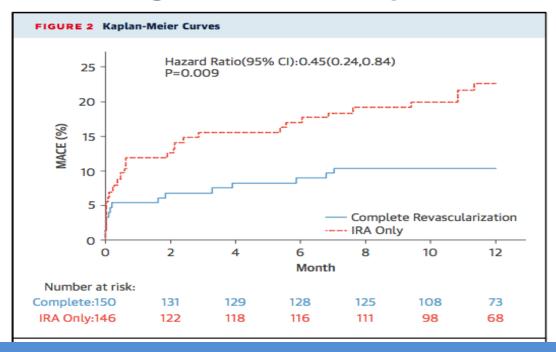


#### **PRAMI** Trial



Primary Endpoint:
Composite of Cardiac death, re-MI and refractory angina




### **PRAMI** Endpoints

| Endpoint                                         | Odds Ratio               | P Value |
|--------------------------------------------------|--------------------------|---------|
| Cardiac Death, Non-Fatal MI or Refractory Angina | 0.35, 95% CI (0.21-0.58) | <0.001  |
| Cardiac Death or Non-Fatal MI                    | 0.36, 95% CI (0.18-0.73) | 0.004   |
| Cardiac Death                                    | 0.34, 95% CI (0.11-1.08) | 0.07    |
| Non-Fatal MI                                     | 0.32, 95% CI (0.13-0.75) | 0.009   |
| Refractory Angina                                | 0.35, 95% CI (0.18-0.69) | 0.002   |





### CvIPRIT Trial



Primary Endpoint:

Composite of Death, Re-MI, CHF and Ischemia-driven Revasc



### **CVIPRIT Endpoints**

| Endpoint                                           | Odds Ratio               | P Value |
|----------------------------------------------------|--------------------------|---------|
| Death, Non-Fatal MI, CHF or Ischemia Driven Revasc | 0.45, 95% CI (0.24-0.84) | 0.009   |
| Death                                              | 0.32, 95% CI (0.06-1.60) | 0.14    |
| Non-Fatal MI                                       | 0.48, 95% CI (0.09-2.62) | 0.39    |
| CHF                                                | 0.43, 95% CI (0.13-1.39) | 0.14    |
| Repeat Revascularization                           | 0.55, 95% CI (0.22-1.39) | 0.2     |





#### Forest Plots of Randomized Studies

Odds Ratio for Long Term Mortality: Culprit Vessel Only vs Multi-vessel PCI at Index PCI





# Staged Multi-vessel PCI What is the Evidence?



#### Forest Plots of Observational Studies

#### Odds Ratio for Long Term Mortality: Culprit Vessel Only vs Staged MV PCI

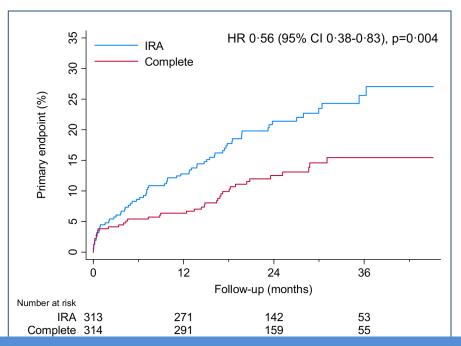
|                             | CULF         | RIT     | STAC       | GED    | Odds Ratio (OR)    |        |       |               |
|-----------------------------|--------------|---------|------------|--------|--------------------|--------|-------|---------------|
| Study                       | Events       | Total   | Events     | Total  | 1 .                |        | OR    | 95%-CI        |
| C (2004)                    | 43           | 254     | 12         | 126    | _ ;                |        | 1 20  | FO 65 3 533   |
| Corpus (2004)               | 42           | 354     | 12         | 126    | <del></del>        |        | 1.28  | [0.65; 2.52]  |
| Rigattieri (2008)           | 7            | 46      | 1          | 64     | 1                  | -      | 11.31 | [1.34; 95.44] |
| Varani (2008)               | 10           | 156     | 2          | 96     | -                  | -      | 3.22  | [0.69; 15.02] |
| Han (2008)                  | 4            | 149     | 3          | 93     | - i                | -      | 0.83  | [0.18; 3.78]  |
| Hannan (2010)               | 40           | 538     | 30         | 538    | <del>       </del> |        | 1.36  | [0.83; 2.22]  |
| Chen (2010)                 | 66           | 351     | 13         | 210    | -                  |        | 3.51  | [1.88; 6.54]  |
| Mohamad (2011)              | 3            | 30      | 2          | 12 -   | •   ;              | -      | 0.56  | [0.08; 3.83]  |
| Barringhaus (2011)          | 106          | 1345    | 4          | 303    | à                  | -      | 6.40  | [2.34; 17.49] |
| Lee (2012)                  | 25           | 1106    | 9          | 538    |                    |        | 1.36  | [0.63; 2.93]  |
| Kim (2014)                  | 15           | 155     | 11         | 252    |                    |        | 2.35  | [1.05; 5.25]  |
| Ma (2015)                   | 41           | 246     | 13         | 201    | - 1 ==-            |        | 2.89  | [1.50; 5.57]  |
| Russo (2015)                | 38           | 779     | 2          | 259    |                    |        | 6.59  | [1.58; 27.51] |
| Toyota (2016)               | 95           | 630     | 59         | 681    |                    |        | 1.87  | [1.33; 2.64]  |
| Bayesian hierarchical meta- | -analysis    |         |            |        | 3 3                |        | 2.09  | [1.54; 2.88]  |
| Fixed effect model          | 492          | 5885    | 161        | 3373   |                    |        | 2.20  | [1.82; 2.67]  |
| Random effects model        |              |         |            |        |                    |        | 2.18  | [1.58; 3.01]  |
| Heterogeneity: I-squared=   | 50.1%, tau-s | quared: | =0.1466, p | 0=0.02 | 3 3                |        |       |               |
|                             |              |         |            | Г      |                    |        |       |               |
|                             |              |         |            | 0.1    | 0.2 0.5 1 2        | 5 10   |       |               |
|                             |              |         |            |        | CVO Better Staged  | Better |       |               |







#### Forest Plots of Observational Studies

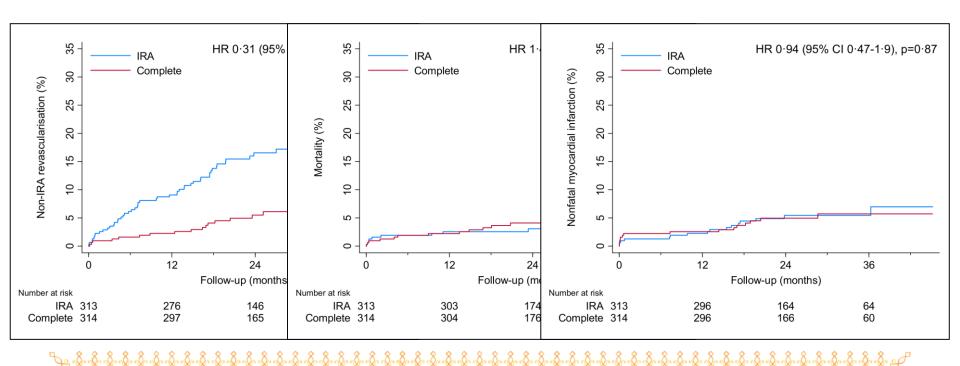

#### Odds Ratio for Long Term Mortality: Staged MV PCI vs MV PCI

|                             | MULTIVES     | SSEL   | STAG     | ED    | Odds Rat  | io (OR)       |      |              |
|-----------------------------|--------------|--------|----------|-------|-----------|---------------|------|--------------|
| Study                       | Events       | Total  | Events   | Total |           |               | OR   | 95%-CI       |
| Corpus (2004)               | 5            | 26     | 12       | 126   | _         | 3             | 2.26 | [0.72; 7.09] |
| Varani (2008)               | 15           | 147    | 2        | 96    |           |               | 5.34 | [1.19; 23.9] |
| Mohamad (2011)              | 2            | 7      | 2        | 12    |           | -             | 2.00 | [0.21; 18.7] |
| Maamoun (2011)              | 2            | 42     | 1        | 36    |           | * 1           | 1.75 | [0.15; 20.1] |
| Kornowski (2011)            | 25           | 275    | 9        | 393   |           | -             | 4.27 | [1.96; 9.29] |
| Jensen (2012)               | 36           | 354    | 16       | 820   |           | -             | 5.69 | [3.11; 10.4] |
| Kim (2014)                  | 5            | 67     | 11       | 252   |           | * 1           | 1.77 | [0.59; 5.27] |
| Bayesian hierarchical meta- | -analysis    |        |          |       |           | 1 1           | 3.59 | [2.04; 5.56] |
| Fixed effect model          | 90           | 918    | 53       | 1735  |           |               | 3.99 | [2.74; 5.80] |
| Random effects model        |              |        |          |       |           |               | 3.89 | [2.65; 5.70] |
| Heterogeneity: I-squared=   | 0%, tau-squa | red=0, | p=0.4953 | _     |           | à à .         |      |              |
|                             |              |        |          | Γ     | 0.2       |               |      |              |
|                             |              |        |          | 0.1   | 0.2 0.5   | 1 2 5 1       | J    |              |
|                             |              |        |          |       | MV Better | Staged Better |      |              |



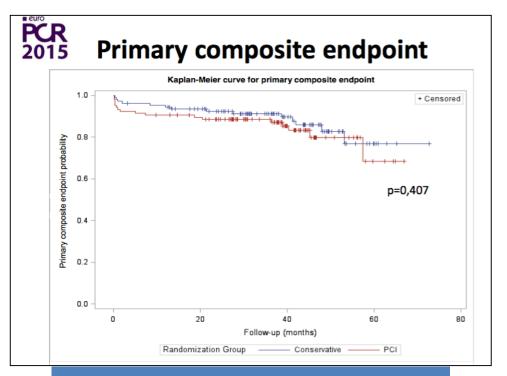


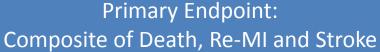
#### **DANAMI-3 PRIMULTI**




Primary Endpoint:

Composite of Death, re-MI and Ischemia driven revasc of non-IRA





#### **DANAMI-3 PRIMULTI**





#### PRAGUE-13





`&`&`&`&`&`&`&`&`&



#### Forest Plots of Randomized Studies

#### Odds Ratio for Long Term Mortality: Culprit Vessel Only vs Staged MV PCI

| Study                        | CULF         |         | STAG    |          |                                         | OD     | OE0/ CI      |
|------------------------------|--------------|---------|---------|----------|-----------------------------------------|--------|--------------|
| Study                        | Events       | TOTAL   | Events  | TOTAL    | (                                       | OR     | 95%-CI       |
| Politi (2010)                | 13           | 84      | 4       | 65       | 1                                       | 2.79   | [0.87; 9.01] |
| Ghani (2012)                 | 0            | 41      | 4       | 80       | < t   C   C   C   C   C   C   C   C   C | 0.20   | [0.01; 3.90] |
| Engstrom (2015)              | 11           | 313     | 15      | 314      | - t                                     | 0.73   | [0.33; 1.61] |
| Hinomaz (2015)               | 7            | 108     | 6       | 106      | 1 1                                     | 1.16   | [0.38; 3.56] |
| Henriques (2015)             | 0            | 154     | 4       | 148      | <u>t</u>                                | 0.10   | [0.01; 1.95] |
| Bayesian hierarchical meta-a | analysis     |         |         |          | í<br>í                                  | 0.94   | [0.31; 2.09] |
| Fixed effect model           | 31           | 700     | 33      | 713      |                                         | 0.91   | [0.55; 1.51] |
| Random effects model         |              |         |         |          |                                         | 0.92   | [0.40; 2.12] |
| Heterogeneity: I-squared=4   | 3.6%, tau−sa | quared= | 0.3606, | p=0.1314 | 1                                       |        |              |
|                              |              |         |         | (        | .1                                      | I<br>O |              |



## Summary of Evidence of Pooled Results

| Type of Study                                 |                                         |
|-----------------------------------------------|-----------------------------------------|
| Observational Studies of MV PCI vs COR        | MV PCI worse                            |
| Observational Studies of Staged PCI vs COR    | Staged PCI better                       |
| Observational Studies of MV PCI vs Staged PCI | Staged PCI better                       |
| Randomized Studies of MV PCI vs COR           | MV PCI better                           |
| Randomized Studies of Staged PCI vs COR       | Staged PCI with similar outcomes to COR |





### Things to Consider

#### **Observational Studies**

- Not randomized/subject to bias
- Unknown Circumstances leading to PCI
- •Multi-vessel PCI at index procedure marker for higher risk (or lower risk) patient?
- •Staged multi-vessel PCI a marker for lower risk?

#### Randomized Studies

- PRAMI stopped prematurely
- •Trials underpowered to detect difference in individual outcomes
- Open label design might bias softer endpoints
- Varying study results
- •Limited information on clinical or lesion selection criteria.



### On Going Randomized Trials

| Randomized Controlled Trial | Design                                                | Size (n) | Composite Primary Endpoint                    |
|-----------------------------|-------------------------------------------------------|----------|-----------------------------------------------|
| COCUA                       | Culprit-only primary PCI vs MV primary PCI            | 646      | 1-year cardiac death, STEMI, ischemia-driven  |
| NCT01180218                 |                                                       |          | TVR                                           |
| ASSIST-MI                   | Culprit-only primary PCI vs MV primary PCI            | 250      | 90-day infarct size by CMR                    |
| NCT01818960                 |                                                       |          |                                               |
| CULPRIT SHOCK               | Culprit-only primary PCI vs MV primary PCI in         | 706      | 30-day death or acute kidney injury requiring |
| NCT01927549                 | cardiogenic shock                                     |          | renal replacement therapy                     |
| FIT                         | Culprit-only primary PCI vs staged PCI                | 180      | 30-day death, MI                              |
| NCT01160900                 |                                                       |          | 1-year stent thrombosis, TVR                  |
| COMPLETE                    | Culprit-only primary PCI vs staged PCI (<72 hr) with  | 3900     | 4-year death, MI                              |
| NCT01740479                 | FFR for lesions 50%-70% DS                            |          |                                               |
| ZES for STEMI               | MV primary PCI vs staged (3-15 days) PCI              | 120      | 1-year death, MI, revascularization           |
| NCT01781715                 |                                                       |          |                                               |
| CompareAcute                | MV primary PCI with FFR vs ischemia-guided PCI        | 885      | 1-year death, MI, cerebrovascular events,     |
| NCT01399736                 |                                                       |          | revascularization                             |
| CROSS-AMI                   | Staged PCI (index hospitalization) vs ischemia-guided | 400      | 1-year cardiovascular death, MI,              |
| NCT01179126                 | PCI                                                   |          | revascularization, HF hospitalization         |



| Factors Favoring MV PCI During the Index PCI                                              | Factors Favoring Staged MV PCI                 |
|-------------------------------------------------------------------------------------------|------------------------------------------------|
| Ongoing chest pain                                                                        | Stable symptoms                                |
| Shock                                                                                     | Prolonged procedure to open the infarct artery |
| Arrhythmias                                                                               | Complex lesion in non-infarct artery           |
| Very large, potentially unstable non-culprit lesion with large area of myocardium at risk | Chronic kidney disease                         |
| Infarct Artery required little time/dye                                                   | Un-cooperative patient                         |
| Anticipated simple PCI of non-infarct artery                                              | Patient Preference                             |
| Obstacles to returning to lab                                                             | Cath Lab team preference                       |

In other words.....

#### DO WHAT IS CLINICALLY APPROPRIATE!

